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Models Of Trait Macroevolution On Trees (MOTMOT) is an R package that allows for testing of models of
trait evolution (Thomas et al. 2012).

• Tree transformation models estimated using Maximum likelihood: Brownian motion, Pagel’s lambda,
Delta, Kappa, Ornstein-Uhlenbeck (OU), Acceleration-Deaceleration (ACDC) and early bursts, psi and
multispi, and estimating lambda alongside other models

• Rate heterogeneous models of evolution. Fit models in which the rate of evolution differs in clades
selected a priori (O’Meara et al. 2006; Thomas et al. 2006), and models with no a-priori shift locations
(Thomas et al. 2012)

• timeSlice fit models in which all rates change at a specific time(s) by testing multiple shift times or
those selected by the user

• modeSlice fit models in which modes change at a specific time(s) in an extension to models introduced
by Slater (2013)

• Nested Shift modes Fit models models in which the ancestral BM rate switches to a ‘nested’ rate within
a monophyletic clade in the phylogeny (Puttick 2018)

• Bayesian estimation of tree transformation models
• Character displacement models of inter-specific competition from Clarke et al. (2017)
• Fast estimation of Phylogenetic Generalised Least Squares (PGLS) using independent contrasts

Introduction

First we install
install.packages("motmot")

and load MOTMOT
library(motmot)

For these examples we will use anoles lizard data available from MOTMOT. A time-calibrated phylogeny of
Anolis species anolis.tree, and various trait and biogeographical trait data anolis.data.
data(anolis.tree)
data(anolis.data)
attach(anolis.data)
anolis.tree

##
## Phylogenetic tree with 165 tips and 164 internal nodes.
##
## Tip labels:
## A_occultus, A_darlingt, A_monticol, A_bahoruco, A_dolichoc, A_henderso, ...
## Node labels:
## 2, 2, 2, 2, 2, 2, ...
##
## Rooted; includes branch lengths.

We will use the continuous trait data: male snout-ventral length Male_SVL. Here, we construct a matrix
of just Male_SVL data, remove missing data, and log-transform the values. All this can be done using the
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function sortTraitData
sortedData <- sortTraitData(phy=anolis.tree, y=anolis.data, data.name="Male_SVL", pass.ultrametric = TRUE)
phy <- sortedData$phy
male.length <- sortedData$trait

Finally, we will ‘prune’ the species from the tree using drop.tip from APE. We plot our tree and data using
the MOTMOT traitData.plot function.
traitData.plot(y=male.length, phy, lwd.traits=2, col.label="#00008050", tck=-0.01, mgp=c(0,0.2,0), cex.axis=0.5, show.tips=FALSE)

For the sake of brevity, in the following examples we fit the models to a subset of these data: including the
clade from node 182 only using the APE function extract.clade.
## uncomment to view the tree
# plot(phy, show.tip.label=FALSE, no.margin=TRUE, edge.col="grey20")
# nodelabels(182, 182, bg="black", col="white")
phy.clade <- extract.clade(phy, 182)
male.length.clade <- as.matrix(male.length[match(phy.clade$tip.label, rownames(male.length)),])

Models of trait evolution

We can now test various models of evolution using our trait data.

Brownian motion

To start we will fit a simple Brownian motion model to the data, as the null hypothesis of phylogenetic trait
evolution (Cavalli-Sforza and Edwards 1967; Felsenstein 1973; 1985). Brownian motion describes a process in
which tip states are modelled under the assumption of a multi-variate normal distribution. On a phylogeny,
the multi-variate mean of tip states is equal to the root state estimate, and variance accummulates linearly
through time. Trait evolution is shared but following a split individual branches evolve and accummulate
trait variance independently from their shared ancestral value.

The function transformPhylo.ML is used to fit Brownian motion models and its derivatives. Here we fit
a simple Brownian motion model to the subset of anolis male SVL data to obtain the Brownian variance,
ancestral estimate, log-likelihood, Akaike Information Criterion (AIC), and small-sample AIC (AICc).
bm.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="bm")
bm.ml

## $brownianVariance
## [,1]
## [1,] 0.001858067
##
## $logLikelihood
## [1] -0.2838382
##
## $root.state
## [1] 3.849481
##
## $AIC
## [1] 4.567676
##
## $AICc
## [1] 5.047676
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Figure 1: TraitData showing the realtive male snout-vent length at the tips
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##
## attr(,"class")
## [1] "bm.ML"

Pagel’s lambda

Here we fit models to test Pagel’s lambda (Pagel 1997; 1999). Pagel’s lambda is a measure of phylogenetic
‘signal’ in which the degree to which shared history of taxa has driven trait distributions at tips. In this
model, internal branch lengths are transformed by the lambda parameter value. When the parameter lambda
equals 1, branches are transformed by multiplying by 1 and so the model is equal to Brownian motion (high
phylogenetic signal). Values of lambda under 1 suggest there has been less influence of shared history on
trait values at the tips. Finally, a lambda value of 0 indicates no phylogenetic influence on trait distributions,
and is equivalent to a ‘star phylogeny’ with no shared branch lengths.

The maximum likelihood of lambda can be estimated in MOTMOT.
lambda.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="lambda")
lambda.ml

## $MaximumLikelihood
## [1] 6.522191
##
## $Lambda
## MLLambda LowerCI UpperCI
## [1,] 0.8369972 0.5259423 0.9742338
##
## $brownianVariance
## [,1]
## [1,] 0.0008245357
##
## $root.state
## [1] 3.853432
##
## $AIC
## [1] -7.044383
##
## $AICc
## [1] -6.044383
##
## attr(,"class")
## [1] "lambda.ML"

The maximum likelhood estimate of Pagel’s lambda is equal to 0.84.

A new feature in MOTMOT allows for plotting of the likelihood profile for the branch-transformation
parameter, in this case Pagel’s lambda using the argument profilePlot in transformPhylo.ML.
lambda.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="lambda", profilePlot=TRUE)

We now compare the relative fit of the BM and lambda models. Lambda has higher likelihood, but it also has
more parameters. The root state and sigma-squared (rate) parameters are present in both models but the
lambda model also requires an estimate of the parameter lambda. We can test whether the lambda model
is a significant improvement over BM. First we test the relative fit by using the chi-squared distribution.
The models differ in one degree of freedom: BM has 2 parameters and lambda has 3. We can use the stats
function pchisq to obtain a p value by testing using a chi-squared distribution. The lambda is indeed a
superior fit compared to BM when fit to these data (p < 0.05).
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Figure 2: Profile plot of ML estimation for Pagel’s lambda
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p.value <- 1 - pchisq(lambda.ml$MaximumLikelihood - bm.ml$logLikelihood, 1)
p.value

## [1] 0.009085056

Additionally there is a large small-sample Akaike Information Criterion (AICc) difference between the two
models: BM has a higher AICc compared to lambda. The difference (11.09) is >4 which is traditionally seen
as indication of a superior fit (Burnham and Anderson 2003).
bm.ml$AICc- lambda.ml$AICc

## [1] 11.09206

Delta

Delta indicates a decrease or increase in the rate of trait evolution through time (Pagel 1997; 1999); a value
of 1 is equivalent to Brownian motion, < 1 indicates a slow-down, and > 1 is indicates greater change closer
to the present. Here we find a Maximum likelihood estimated for Delta of 2.23 but the CI spans < 1 to > 4,
so it is not possible to conclusively support a change in the rate of evolution through time.
delta.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="delta")
delta.ml

## $MaximumLikelihood
## [1] 1.179797
##
## $Delta
## MLDelta LowerCI UpperCI
## [1,] 2.231464 0.8477531 4.660712
##
## $brownianVariance
## [,1]
## [1,] 6.013993e-06
##
## $root.state
## [1] 3.8843
##
## $AIC
## [1] 3.640407
##
## $AICc
## [1] 4.640407
##
## attr(,"class")
## [1] "delta.ML"

Kappa

Kappa is used as a measure of punctuated evolution and spans values of 0-1 (Pagel 1997:1999). A Kappa
value of 1 is equivalent to BM, and 0 indicates trait change occurs at events of speciation. Here there is
evidence of punctuated evolution. transformPhylo.ML also allows users to see the the phylogeny transformed
by model parameters. As an example, we show the original, BM model phylogeny and compare this with the
phylogeny transformed by the Kappa phylogeny.
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kappa.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="kappa", profilePlot=FALSE, returnPhy=TRUE)
par(mfrow=c(1,2))
plot.phylo(phy.clade, show.tip.label=FALSE, no.margin=TRUE)
mtext("Original phylogeny", 3, cex=0.7, line=-1)
plot.phylo(kappa.ml$kappaPhy, show.tip.label=FALSE, no.margin=TRUE)
mtext("Kappa model phylogeny", 3, cex=0.7, line=-1)
mtext("Kappa = 1e-8", 3, cex=0.7, line=-2)

Ornstein-Uhlenbeck

The OU model allows for modelling of attraction to a optimum value, alpha (Hansen 1997; Butler and King
2004). This model again is similar to the Brownian motion model, but models the strength of attraction to
alpha. The OU model can be difficult to interpret and care is advised in its use (Cooper et al. 2016).

In MOTMOT, as with most implements of the phylogenetic OU model, the value of the optimum is equal
to the ancestral trait estimate. With all transformPhylo.ML functions it is possible to change the bounds
on the estimated parameters. For example, here the value of alpha is constrained to 2 using the argument
upperBound.
ou.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="OU", profilePlot=TRUE, upperBound=2)

ou.ml

## $MaximumLikelihood
## [1] 1.743459
##
## $Alpha
## MLAlpha LowerCI UpperCI
## [1,] 0.01693353 0.0004499003 0.03912232
##
## $brownianVariance
## [,1]
## [1,] 0.002823932
##
## $root.state
## [1] 3.876702
##
## $AIC
## [1] 2.513082
##
## $AICc
## [1] 3.513082
##
## attr(,"class")
## [1] "ou.ML"

The value of alpha is higher than zero, but very small (0.01692855). So the model is not equivalent to
Brownian motion but there is little evidence from AICc that the model is an improvement, and the likelihood
ratio test show a non-significant improvement so it does not have higher relative support compared to BM (p
> 0.05).
p.value <- 1 - pchisq(ou.ml$MaximumLikelihood - bm.ml$logLikelihood, 1)
p.value

## [1] 0.1544952
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Figure 3: Comparison of BM and Kappa transformed trees.
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Figure 4: Profile plot to estimate alpha
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bm.ml$AICc- ou.ml$AICc

## [1] 1.534594

ACDC and Early Burst

A new addition to MOTMOT is the ACDC model (Blomberg et al. 2003). This model allows for exponential
changes in the rate of evolution in the history of a clade.
acdc.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="ACDC", profilePlot=TRUE)

acdc.ml

## $MaximumLikelihood
## [1] 1.743459
##
## $ACDC
## MLacdc LowerCI UpperCI
## [1,] 0.03385981 0.000879245 0.04246516
##
## $brownianVariance
## [,1]
## [1,] 0.0002590746
##
## $root.state
## [1] 3.876696
##
## $AIC
## [1] 2.513082
##
## $AICc
## [1] 3.513082
##
## attr(,"class")
## [1] "acdc.ML"

There is little evidence here of exponential decreases or increases in the rate of trait evolution - the ACDC
exponential parameter is close to 0 (0.034). We can see this is not a significant improvement on BM.
p.value.2 <- 1 - pchisq(acdc.ml$MaximumLikelihood - bm.ml$logLikelihood , 1)
p.value.2

## [1] 0.1544951

As an example, here we constrain the ‘upperBound’ to < 0, this is equivalent to the Early Burst model
(Harmon et al. 2010) fit in geiger.
transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="ACDC", profilePlot=FALSE, upperBound=-1e-6, print.warning=FALSE)

## $MaximumLikelihood
## [1] -0.2839606
##
## $ACDC
## MLacdc LowerCI UpperCI
## [1,] -1e-06 -0.01322547 -1e-06
##
## $brownianVariance
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Figure 5: Profile plot to estimate the ACDC parameter
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## [,1]
## [1,] 0.001858181
##
## $root.state
## [1] 3.849481
##
## $AIC
## [1] 6.567921
##
## $AICc
## [1] 7.567921
##
## attr(,"class")
## [1] "acdc.ML"

The estimate of -1e-6 for the exponential decrease parameter, which means the model is effectively equivalent
to Brownian motion.

psi and multispi

The parameter psi is similar to the parameter Kappa in that it is a measure of the relative contribution
of speciational (~punctuated) and gradual evolution to trait change on a phylogeny (Ingram 2011; Ingram
et al. 2016). The parameter psi is based upon measures of evolution over time and at speciation, and can
also account for ‘hidden’ nodes not seen in the input phylogeny. The parameter psi measures the proportion
of total evolutionary change (speciational + gradual) that can be attributable to speciational evolution, so
the estimation for psi between 0 (Brownian motion) and 1 (indicating equal branch lengths, ~speciational
change).

In MOTMOT we can fit a simple psi model using the input tree.
psi.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="psi", profilePlot=TRUE)

psi.ml

## $MaximumLikelihood
## [1] 8.495569
##
## $psi
## MLpsi LowerCI UpperCI
## [1,] 1 0.316058 1
##
## $brownianVariance
## [,1]
## [1,] 0.0008018518
##
## $root.state
## [1] 3.761269
##
## $AIC
## [1] -10.99114
##
## $AICc
## [1] -9.991139
##
## attr(,"class")
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Figure 6: Profile plot to estimate the psi parameter
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## [1] "psi.ML"

This indicates support for the psi model is a significant improvement on Brownian motion (p < 0.05).
p.value.psi <- 1 - pchisq(psi.ml$MaximumLikelihood - bm.ml$logLikelihood , 1)
p.value.psi

## [1] 0.003046501

We could also get a potentially more accurate of speciation rates by using the full tree, rather than the pruned
tree to estimate speication and extinction rates as this will give more accurate estimates rather than using
the taxa with complete data only. If extinction rates are larger than 0, then the estimates will differ from the
simple model above.
psi_ext.est <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="psi", profilePlot=FALSE, hiddenSpeciation=TRUE, full.phy=phy)
all.equal(psi.ml, psi_ext.est)

## [1] TRUE

In this case, there is no difference in the estimates as extinction rates are equal to 0.

We can also apply multipsi model in which different regions of the tree have different estimates of the
parameter psi. We can now fit the multispi model with these data. In MOTMOT, this model requires branch
labels given a priori by the user to delimit the different regimes on the phylogeny. Note that these clades
with potentially different psi regimes do not need to be monophyletic clades. Here we arbitarily assign two
clades ‘a’ and ‘b’ to test differences between them.
plot(phy.clade, no.margin=TRUE, cex=0.8)
two.clade.labels <- c(rep("a", 17), rep("b",37))
edgelabels(two.clade.labels, col=c(rep("blue", 17), rep("red", 37)), bg="white")

Using these data we fit the model with transformPhylo.ML.
transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="multipsi", branchLabels=c(rep("a", 17), rep("b",37)), hiddenSpeciation=TRUE, full.phy=phy)

## $MaximumLikelihood
## [1] 8.495569
##
## $psi
## MLpsi LowerCI UpperCI
## a 1 0.04812257 1
## b 1 0.20955316 1
##
## $brownianVariance
## [,1]
## [1,] 0.0008018518
##
## $root.state
## [1] 3.761269
##
## $AIC
## [1] -8.991139
##
## $AICc
## [1] -7.252008
##
## attr(,"class")
## [1] "multipsi.ML"
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Figure 7: Two clades used in the multipsi model

15



In this model, the estimate of psi does not differ between the two regions of the tree

Estimate Pagel’s lambda alongside other modes

One way to deal with ‘noisy’ data is to estimate Pagel’s lambda alongside a parameter of interest. By using
Pagel’s lambda alongside other models it may be possible to account for variation in the data that may be a
result of errors in the phylogeny or trait data. In MOTMOT, Pagel’s lambda can be estimated alongside the
delta, kappa, OU, psi, and ACDC models. Here we look at example using ACDC. The model is fit with same
function. transformPhyo.ML but with the argument lambdaEst set to TRUE.
acdc.ml.lambda <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="ACDC", lambdaEst=TRUE)
# original ACDC model
acdc.ml

## $MaximumLikelihood
## [1] 1.743459
##
## $ACDC
## MLacdc LowerCI UpperCI
## [1,] 0.03385981 0.000879245 0.04246516
##
## $brownianVariance
## [,1]
## [1,] 0.0002590746
##
## $root.state
## [1] 3.876696
##
## $AIC
## [1] 2.513082
##
## $AICc
## [1] 3.513082
##
## attr(,"class")
## [1] "acdc.ML"
# ACDC model plus lambda
acdc.ml.lambda

## $MaximumLikelihood
## [1] 7.376867
##
## $ACDC
## MLacdc LowerCI UpperCI
## [1,] -0.1824288 -0.3234722 -0.08265701
##
## $brownianVariance
## [,1]
## [1,] 0.01268871
##
## $root.state
## [1] 3.836039
##
## $lambda
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## [1] 0.1392954
##
## $AIC
## [1] -4.753735
##
## $AICc
## [1] -2.026462
##
## attr(,"class")
## [1] "acdc.ML"

We can see lambda is < 1, and this has affected the parameter estimation. The improvement in the model fit
is significant compared to the ACDC model fit without estimating lambda and the null BM model.
# p value of the ACDC and ACDC+lambda models. No significant improvement
1 - pchisq(acdc.ml.lambda$MaximumLikelihood - acdc.ml$MaximumLikelihood , df=1)

## [1] 0.01762134
# p value of the BM and ACDC+lambda model comparison. No significant improvement
1 - pchisq(acdc.ml.lambda$MaximumLikelihood - bm.ml$logLikelihood, df=2)

## [1] 0.02170196

Rate heterogeneous models of evolution

rate heterogeneity selected a priori

MOTMOT can test models of evolution in which pre-defined clades can vary in the rate of evolution. Here
we fit a model in which the nodes descending from nodes 32 and 49 have a seperate rate of evolution. First,
we can visualise these nodes on the phylogeny.
plot(phy.clade, show.tip.label=FALSE, no.margin=TRUE, edge.col="grey20")
nodelabels(c(32, 49), c(32, 49), bg="black", col="white")

We then fit the MOTMOT model, again using the function transformPhylo.ML. We use the argument
model=clade. This fits the non-censored model of O’Meara et al. (2006).
cladeRate.ml <- transformPhylo.ML(phy=phy.clade, y=male.length.clade, model="clade", nodeIDs=c(32, 49))
cladeRate.ml

## $Rates
## node MLRate LowerCI UpperCI
## [1,] 32 0.8138100 0.2632955 3.263628
## [2,] 49 0.6819079 0.1896347 2.952364
##
## $MaximumLikelihood
## [1] -0.1462557
##
## $brownianVariance
## [,1]
## [1,] 0.002143258
##
## $root.state
## [1] 3.870488
##
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Figure 8: Lineages with different rates of evolution
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## $AIC
## [1] 8.292511
##
## $AICc
## [1] 10.03164
##
## attr(,"class")
## [1] "clade.ML"

These results indicate that the two clades tend to have a lower rate of evolution compared to the background
rate. However, the CIs indicate these decreases may not be robust.

rate heterogeneity with no a priori information

We can also fit rate heterogeneous models without specifying where we expect shifts on the tree. We can use
the arguments model="tm1" and model="tm2". These models fit the traitMedusa model in which nodes are
individually tested for rate increases or decreases (Thomas and Freckleton 2012), and the clade or branch
with a rate change that produces the largest increase in likelihood is returned. Note, it is possible to exclude
small nodes using the argument minCladeSize. As well as allowing clade differences in rate, the tm2 also
allows for branch-based increases or decreases in rate, whereas tm1 only searches for clade-based rate changes.

We can now fit the tm2 algorithm. The output shows the log-likelihood, AIC, AICc, rate type (branch of
clade), for the best-fitting model at each stage. This starts with the BM model, and then one shift model,
two shift model, etc.,
# tm1 algorithm not run
# tm1.ml <- transformPhylo.ML(y=male.length.clade, phy=phy.clade, model="tm1", minCladeSize=2, nSplits=3)
# trait.medusa.tm1.summary <- summary(tm1.ml, cutoff=2, AICc=T)
# tm2 model
tm2.ml <- transformPhylo.ML(y=male.length.clade, phy=phy.clade, model="tm2", minCladeSize=5, nSplits=2)

##
## BM model
## node shiftPos lnL n.params AIC AICc
## BM 0 1 -0.2838382 2 4.567676 5.047676
##
## Shift 1
## node shiftPos lnL n.params AIC AICc rate.1
## shift.1 39 clade 3.042358 3 -0.08471602 0.915284 0.09148646
##
## Shift 2
## node shiftPos lnL n.params AIC AICc rate.1
## shift.2 44 clade 4.746785 5 0.5064296 3.233702 0.1408068
## rate.2
## shift.2 3.158565

We can summarise the analyses using summary.traitMedusa or just and summaryplotting the shifts on the
phylogeny using the function plot.traitMedusa.model or just plot. These results show a decrease at node
39 that we can visualise on the phylogeny.
trait.medusa.tm2.summary <- summary(tm2.ml, cutoff=2, AICc=TRUE)
trait.medusa.tm2.summary

## $ModelFit
## lnL n.params AIC AICc
## shift.1 3.042358 3 -0.08471602 0.915284
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##
## $Rates
## node shiftPos MLRate LowerCI UpperCI
## 1 39 clade 0.0914864604723702 0.0260301808222033 0.500374159059036
##
## $optimalTree
##
## Phylogenetic tree with 28 tips and 27 internal nodes.
##
## Tip labels:
## A_alutaceu, A_inexpect, A_vanidicu, A_alfaroi, A_macilent, A_clivicol, ...
## Node labels:
## 2, 2, 2, 2, 2, 2, ...
##
## Rooted; includes branch lengths.
##
## $original.phy
##
## Phylogenetic tree with 28 tips and 27 internal nodes.
##
## Tip labels:
## A_alutaceu, A_inexpect, A_vanidicu, A_alfaroi, A_macilent, A_clivicol, ...
## Node labels:
## 2, 2, 2, 2, 2, 2, ...
##
## Rooted; includes branch lengths.
##
## attr(,"class")
## [1] "traitMedusa.model"
colour_motmot <- plot(trait.medusa.tm2.summary, reconType = "rates", type = "fan", cex=0.5, edge.width=2)

Thomas and Freckleton (2012) showed the tm2 algortihm has a high type-one error rate. One way to
ameliorate this is to estimate the level a one shift is supported when we know BM is the true model. For
example, we could simulate 1000 BM datasets on the tree, estimate a single shift using the tm2 algortihm,
and calculating the difference between the AICcs for each BM and one shift model. We can these use this
difference to estimate the AICc ‘penalty’ the is needed to reduce the tm2 type-one error rate to 0.05. We
could use this penalty in the cutoff argument of the summary.traitMedusa (or summary) argument.

This can all be calculated with the MOTMOT function calcCutOff. The function requires the tree and
input from the model applied to the empirical data as well as the number of simulations. Here we calculated
the AICc cut-off required for the tm2 analysis from above (for brevity this is not run here, but should be run
for each analysis individually).
## uncomment to run
# set.seed(203);
# calcCutOff(phy.clade, n=1000, model="tm2", minCladeSize=5, nSplits=1);
## 95%
## 5.698198

Here if we repeat this analysis with the appropriate AICc cut-off (5.698) the we see that the single-rate
Brownian motion is, in fact, supported.
summary(tm2.ml, cutoff=5.698198, AICc=TRUE)$Rates

## [1] "Single rate"
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Figure 9: The subset of the tree showing the rate heterogeneity estimated from the traitMedusa model
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timeSlice model

A new addition to motmot is a Maximum likelihood model that allows for heterogeneous rates in different
time periods. These models are seperate from the models that allow for heterogeneous rates among lineages,
as modelled by the traitMedusa algorithms.

The timeSlice model is implemented using the transformPhylo.ML function, using the argument
model='timeSlice'. The function allows for two seperate models of evolution. In one, it is possible to test
shifts in evolution at times selected a priori. Alternatively, the fit of models can be tested at a range of
different times, and the function will return the best-fitting model

First we will test for a shift in the rate of evolution 10 million years ago.
timeSlice.10.ml <- transformPhylo.ML(y=male.length.clade, phy=phy.clade, model="timeSlice", splitTime=10)

## [1] "BM model"
## lnL AIC AICc sigma.sq.1 anc.state.1
## -0.283838169 4.567676338 5.047676338 0.001858067 3.849481405
## [1] "shiftModel"
## lnL AIC AICc sigma.sq.1 anc.state.1
## 2.946497537 2.107004926 3.846135361 0.001006387 3.860015270
## rates1 rates2 time.split1
## 0.692073080 2.944764076 10.000000000

We can use the function plot.timeSlice.ML or simply plot to summarise and plot the results. The output
summarises the best model according to AICc fit. This function automatically plots the original tree showing
the location of shift(s), and the colours show the relative rates in each time slice. The second plot below
shows the same tree and colours, but with the branch lengths scaled to the ML optimised rates.
outputSummary <- plot(timeSlice.10.ml, cutoff=0.001, cex=0.55, edge.width=2, cex.plot=0.8, colour.ramp=c("blue", "red"), label.offset=0.5)

We can also see other summarise information, such as the CI for each rate estimate.
outputSummary$RatesCI

## rates LCI UCI
## rates1 0.6920731 0.1873339 2.11563
## rates2 2.9447641 0.9633084 10.87739

Rather than testing the overall fit of each model, the model can search all shift times and returns the
shift location or locations with the highest likelihood. The function automatically tests for all 1 Ma shifts
between the age of the tree - 10 Ma, and the present + 10 Ma; all these presets can be customised using the
boundaryAge argument that supplies a vector with the first age specifying the distance from the root and
the second age specifying the age from the tips. The splitTime argument sets the ages at which all shifts
will be tested for between the boundaryAge with the default testing all shifts at 1 Ma intervals. The model
searches for n shifts set by the nSplits argument.

This model searches for the highest likelihood single shift by searching for the highest likelihood shift time
between 62-8 Myrs.
timeSlice.ml <- transformPhylo.ML(y=male.length.clade, phy=phy.clade, model="timeSlice", nSplits=1, boundaryAge=8)

## [1] BM model
## lnL AIC AICc sigma.sq.1 anc.state.1
## -0.283838169 4.567676338 5.047676338 0.001858067 3.849481405
## [1] shift 1
## lnL AIC AICc sigma.sq.1 anc.state.1 rates1
## 3.584675298 0.830649404 2.569779838 0.001012562 3.859446535 0.666861158
## rates2 time.split1
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Figure 10: TimeSlice plot with a split at 10 Ma
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## 3.238675325 8.000000000

And summarise the results. We can selected the cutoff AICc improvement needed to justify selecting the
next model. Here we use the arbitary cut-off value of 1. We could test this formally by estimating the correct
AICc value needed to reduced type-error > 5% by using BM simulated data (an example using the tm2 is
shown above).
outputSummary <- plot(timeSlice.ml, cutoff=1, cex=0.2, edge.width=2, cex.plot=0.8, colour.ramp=c("blue", "red"), label.offset=0.5)

modeSlice model

In a related extension, we have incorporated the new modeSlice model to the transformPhylo.ML. modeSlice
incorporates and extends the methods of Slater (2013) by allowing for multiple shifts in various modes of
evolution (BM, OU, EB, and Kappa) at different times in the phylogeny’s history. This is flexible as users
can input multiple rate shift times with different combinations of modes. Furthermore, time bins with a
BM mode of evolution can optionally vary in the rate of evolution compared to the background variance
(rate.var argument), and users can include a rate scalar alongside EB modes.

Here a model is fit with a shift from an EB model with associated rate scalar to an OU model 40 Ma and then
to a BM rate shift model at 30 Ma to the present. The results indicate an ACDC/EB scalar (root age-40Ma),
followed by a OU model with alpha of 1.75 (40-30Ma), followed by a rate increase (5.3x background from
30-0 Ma). However this model is not supported over Brownian motion.
modeSlice.ml <- transformPhylo.ML(y=male.length.clade, phy=phy.clade, model="modeSlice", splitTime=c(40, 30), mode.order=c("ACDC", "OU", "BM"), rate.var=TRUE, acdcScalar=TRUE)
modeSlice.ml$AICc

## [1] 14.74853
bm.ml$AICc

## [1] 5.047676

Nested models of evolution

We can also tested models of nested evolution in which an ancestral model of BM evolution changes to a
alternative model (EB, OU, kappa, delta, psi) within the phylogeny (Puttick 2018).

Here we can show an example of BM -> OU and BM -> ACDC at node 44 of the phylogeny. However,
neither of these is a significantly better relative fit than BM.
bm.model <- transformPhylo.ML(male.length.clade, phy=phy.clade, model="bm")
nested.acdc <- transformPhylo.ML(male.length.clade, phy=phy.clade, model="ACDC", nodeIDs=44)
nested.ou <- transformPhylo.ML(male.length.clade, phy=phy.clade, model="OU", nodeIDs=44)

1 - pchisq(nested.acdc$MaximumLikelihood - bm.model$logLikelihood, 1)

## [1] 0.05740889
1 - pchisq(nested.ou$MaximumLikelihood - bm.model$logLikelihood, 1)

## [1] 0.3614244
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Figure 11: TimeSlice plot with Maximum likelihood estimation of split time
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Bayesian estimation of tree transformation models

Parameters of various modes of evolution can be conducted using a simple Bayesian Markov Chain Monte
Carlo (MCMC) algorithm in transformPhylo.MCMC which may better reflect probabilistic uncertainty in
parameter estimates compared to Maximum likelihood estimation. By default the model places a uniform
prior and new proposals using an indepdence sampler in that new proposed parameters are not dependent
upon the current value of the chain.

After completion, the function returns convergence diagnostics (effective sample size, acceptance proportion
ratio), MCMC chain, and the median value and 95% Highest Posterior Density of the estimated parameter.

The function ‘transformPhylo.MCMC’ allows for the estimation of model parameters using Bayesian statistics.
Models of lambda, delta, kappa, OU, ACDC, psi, and multi-psi can currently be modelled using transform-
Phylo.MCMC. Additionally, Pagel’s lambda can be optimised alongside parameters and nested modes in the
same way as transformPhylo.ML.

We will run an MCMC chain of 1000 generations to estimate Pagel’s lambda and discarding the first 10% (‘200
generations (’burn.in = 0.1’). All the models use a ‘uniform’ prior for each of the parameters. For lambda,
this is a uniform distribution between 0 and 1 (although lambda can reach slightly higher than one), meaning
we think all potential values are equally likely. To obtain identical results wel will set ‘random.start=FALSE’,
if this is set to TRUE a random start value is taken from the system time
set.seed(12) # set seed so run will be identical - for example use only
lambda.mcmc <- transformPhylo.MCMC(y=male.length.clade, phy=phy.clade, model="lambda", mcmc.iteration=2000, burn.in=0.25, random.start=FALSE, sample.every=1)

We can know check the posterior estimate of lambda and convergence of the model. The median and 95
Highest Posterior Density (HPD) is output by the model. Some diagnostics are output as standard: Effective
Sample Size (ESS) and acceptance rate. We aim for an ESS of at least 200 and an acceptance rate around
0.44
lambda.mcmc[1:4]

## $median
## Lambda
## 0.7893048
##
## $`95.HPD`
## lower 95% HPD upper 95% HPD
## 0.5169347 0.9649743
##
## $ESS
## Lambda
## 356.8689
##
## $acceptance.rate
## [1] 0.3544304

Our lambda median value is 0.79 but there is a large 95% HPD (0.52-0.96). The ESS and acceptance rate look
ok. We can also plot the trace from the MCMC chain - this could look better - running for more generations
would help
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Figure 12: MCMC trace for Pagel’s lambda
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mcmc.plot(lambda.mcmc)

Character displacement models

Magnus Clarke et al. (2017) introduced a character displacement model in which inter-specific competition
can drive trait change. This model estimates a parameter ‘a’ that drives the strength of inter-specific
competition, alongside a Brownian motion model with parameter estimation of the trait variance. If a=0 the
model is equivalent to Brownian motion, and larger values of a drive trait evolution away from the values of
inter-specific competitors.

The character displacement model employs an approximate Bayesian computation (ABC) approach, in which
many datasets are simulated based on the known tree using a range of parameter values for a and the trait
variance. These simulations then are compared to the empirical data to estimate the ‘best-fitting’ parameters
of the Brownian motion process variance, and the character displacement parameter a.

First data are simulated on the known tree, allowing for a range of variance (sigma) and a values with both
sample from a uniform distribution between 0 and 8. For brevity, we will use 100 simulations only. For actual
analyses, many more iterations would be required, perhaps 1 million (Clarke et al 2017). Note this process
can be made parallel on Mac and Linux systems by using the ‘mc.cores’ argument, but here we will use one
core only.
data(finches)
emp.tree <- finch.tree
emp.data <- finch.data
param.simulation <- chr.disp.param(emp.tree, n.sim = 100, max.sigma = 8, max.a = 8, ntraits=1, mc.cores = 1)

We can then compare these simulated data with the empirical data using the function ‘chr.disp.lrt’. We will
use only 75 simulations from the posterior, this value can be guided by simulations (see Clarke et al. 2017)
chr.disp.lrt(emp.tree=emp.tree, emp.data=emp.data, param.out=param.simulation, posteriorSize=75)

## $estimates
## Brownian motion Character displacement model
## sigma 1.44 4.906667
## a 0.00 4.586667
##
## $likelihood
## log.h.0.lik. log.h.1.lik. likelihood.ratio.test p.value
## 1 -5.214016 -3.800351 2.82733 0.09267232

The output shows the ‘estimates’ for hypothesis 0 (Brownian motion) and hypothesis 1 (character displacement)
with the variance and a values summarised (a is 0 in the Brownian motion model, by definition). The second
list element ‘likelihood.ratio.test’ shows the likelihood of each model, the value of the likelihood-ratio test
statistic, and the p value (here the character displacement is not supported over the character displacement
model).

Fast estimation of Phylogenetic Generalised Least Squares

The package caper (Orme et al 2018) offers an excellent model to run Phylogenetic Generalised Least Squares
(PGLS) models, but these are based-upon Generalised Least Squares (using variance-covariance matrices)
which are substantially slower than using indpendent contrasts (Freckleton 2012).

In motmot, code allows for continuous PGLS models can be estimated using contrasts - this gives identical
results to caper but is substantially faster, as is shown below. At current only continuous data is allowed in
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the models for motmot, so if any of the input data are not continuous CAPER or similar should be used.
Additionally motmot only estimates Pagel’s lambda rather than other models, such as Kappa as offered by
CAPER
# Data and phylogeny
data(anolis.tree)
anolis.tree$node.label <- NULL
set.seed(3492)
lm.data <- transformPhylo.sim(phy=anolis.tree, n=2, model="bm")
dat <- data.frame(x = lm.data[,1], y = lm.data[,2], names = anolis.tree$tip, row.names = anolis.tree$tip)
# pgls from CAPER with matrix inversion
library(caper)

## Loading required package: MASS

## Loading required package: mvtnorm
comp.dat <- comparative.data(anolis.tree, dat, names)
time.now <- Sys.time()
matrix.inv.caper <- pgls( y ~ x, data = comp.dat, lambda="ML")
pgls.time <- Sys.time() - time.now
pgls.time

## Time difference of 0.9138291 secs
time.now <- Sys.time()
picModel <- pic.pgls(formula=y ~ x, phy=anolis.tree, y = dat, lambda="ML", return.intercept.stat=FALSE)
pic.time <- Sys.time() - time.now
pic.time

## Time difference of 0.219085 secs

The results are identical between the two methods
# from caper
summary(matrix.inv.caper)

##
## Call:
## pgls(formula = y ~ x, data = comp.dat, lambda = "ML")
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.27281 -0.52137 0.08971 0.75199 2.21433
##
## Branch length transformations:
##
## kappa [Fix] : 1.000
## lambda [ ML] : 1.000
## lower bound : 0.000, p = < 2.22e-16
## upper bound : 1.000, p = 1
## 95.0% CI : (0.873, NA)
## delta [Fix] : 1.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.147535 2.685655 -0.4273 0.6697
## x 0.106595 0.073089 1.4584 0.1466
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##
## Residual standard error: 0.9448 on 163 degrees of freedom
## Multiple R-squared: 0.01288, Adjusted R-squared: 0.006825
## F-statistic: 2.127 on 1 and 163 DF, p-value: 0.1466
# from MOTMOT
picModel

## $model
##
## Call:
## lm(formula = formula, data = pic.data, x = TRUE, y = TRUE)
##
## Coefficients:
## x
## 0.1066
##
##
## $model.summary
##
## Call:
## lm(formula = formula, data = pic.data, x = TRUE, y = TRUE)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1581 -0.8276 -0.1225 0.6007 2.3315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.10660 0.07309 1.458 0.147
##
## Residual standard error: 0.9448 on 163 degrees of freedom
## Multiple R-squared: 0.01288, Adjusted R-squared: 0.006825
## F-statistic: 2.127 on 1 and 163 DF, p-value: 0.1466
##
##
## $intercept
## [1] -1.147535
##
## $lambda
## [1] 1
##
## $logLikelihood
## [,1]
## [1,] -523.2653
##
## $AIC
## [,1]
## [1,] 1047.531
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